MRI Chest (Thorax) - CAM 743

Policy 
INDICATIONS FOR CHEST MRI

The combination of superior soft tissue contrast and lack of ionizing radiation may make chest magnetic resonance imaging (MRI) preferable for the pediatric population or evaluation of the non-lung parenchyma. This must be weighed against a longer acquisition time and greater likelihood of artifact from patient motion. Chest computed tomography (CT) is generally better for lung evaluation. Chest magnetic resonance angiography (MRA) is ordered for evaluation of the intrathoracic blood vessels. Chest MRI and chest MRA should not be approved at the same time.

Chest Mass (non-lung parenchymal)
(Azizad, 2016; Carter, 2015, 2016, 2017; Hochhegger, 2011; Mullan, 2011)

  • Mass or lesion, including lymphadenopathy, after non-diagnostic X-ray or ultrasound (chest CT indicated for pulmonary nodule)
  • Thymoma screening in Myasthenia Gravis patients (Kumar, 2015)
  • Congenital thoracic malformation on other imaging (chest X-ray, echocardiogram, gastrointestinal study, or inconclusive CT) (Ferreira, 2015; Hellinger, 2011; Karaosmanoglu, 2015; Poletto, 2017)

Chest Wall Pain (after initial evaluation with chest X-ray and/or rib series radiographs)

  • History of known or suspected cancer
  • Signs and symptoms of infection (non-lung parenchymal), such as:
    • Accompanying fever
    • Elevated inflammatory markers
    • Known infection at other sites
  • Suspected muscle or tendon tear where imaging would change treatment

Brachial Plexopathy
(Mansukhani, 2013; Vijayasarathi, 2016). 

  • If mechanism of injury or electromyography/nerve conduction velocity (EMG/NCV) studies are suggestive
  • Chest MRI is preferred study, but neck and/or shoulder (upper extremity) MRI can be ordered depending on the suspected location of injury

Cystic Fibrosis
(Woods, 2020)

  • Can be an alternative to chest CT to evaluate perfusion abnormalities, bronchiectasis, and mucus plugging if needed for treatment planning

Vascular Diseases are better evaluated with chest CTA or MRA
(ACR, 2019)

  • Superior vena cava (SVC) syndrome (Friedman, 2017)
  • Subclavian Steal Syndrome after positive or inconclusive ultrasound (Osiro, 2012; Potter, 2014)
  • Thoracic Outlet Syndrome (ACR, 2014; Chavhan, 2017; Povlsen, 2018)
  • Takayasu’s arteritis (Keser, 2014)
  • Acute or chronic aortic dissection (ACR, 2017; Barman, 2014)
  • Pulmonary hypertension — To evaluate for cause after echocardiogram or right heart catheterization (Ascha 2017, Rose-Jones 2015)

Congenital Malformations

  • Congenital heart disease with pulmonary hypertension (Pascall 2018)
  • Pulmonary sequestration (Sancak, 2003)

Atrial fibrillation with ablation planned
(Kolandaivelu 2012)

Preoperative/procedural evaluation

  • Pre-operative evaluation for a planned surgery or procedure

Post-operative/procedural evaluation

  • Post-surgical follow-up when records document medical reason requiring additional imaging

Background
Magnetic resonance imaging (MRI) is a noninvasive imaging technique for detection and evaluation of various disease and conditions in the chest, e.g., congenital anomalies and aneurysms. MRI may be used instead of computed tomography (CT) in patients with allergies to radiographic contrast or with impaired renal function.

Overview 
MRI and Myasthenia Gravis — Myasthenia Gravis is a chronic autoimmune disease characterized by weakness of the skeletal muscles causing fatigue and exhaustion that is aggravated by activity and relieved by rest. It most often affects the ocular and other cranial muscles and is thought to be caused by the presence of circulating antibodies. Symptoms include ptosis, diplopia, chewing difficulties and dysphagia. Thymoma has a known association with myasthenia. Contrast-enhanced MRI may be used to identify the presence of a mediastinal mass suggestive of myasthenia gravis in patients with renal failure or allergy to contrast material.

MRI and Thoracic Outlet Syndrome — Thoracic outlet syndrome is a group of disorders involving compression at the superior thoracic outlet that affects the brachial plexus, the subclavian artery, and veins. It refers to neurovascular complaints due to compression of the brachial plexus or the subclavian vessels. Magnetic resonance multi-plane imaging shows bilateral images of the thorax and brachial plexus and can demonstrate the compression of the brachial plexus and venous obstruction.

MRI and Brachial Plexus — MRI is the only diagnostic tool that accurately provides high resolution imaging of the brachial plexus. The brachial plexus is formed by the cervical ventral rami of the lower cervical and upper thoracic nerves which arise from the cervical spinal cord, exit the bony confines of the cervical spine, and traverse along the soft tissues of the neck, upper chest, and course into the arms. 

References 

  1. Azizad S, Sannananja B, Restrepo CS. Solid Tumors of the Mediastinum in Adults. Semin Ultrasound CT MR. Jun 2016;37(3):196-211. doi:10.1053/j.sult.2016.03.002
  2. Carter BW, Benveniste MF, Betancourt SL, et al. Imaging Evaluation of Malignant Chest Wall Neoplasms. Radiographics. Sep-Oct 2016;36(5):1285-306. doi:10.1148/rg.2016150208
  3. Carter BW, Benveniste MF, Truong MT, Marom EM. State of the Art: MR Imaging of Thymoma. Magn Reson Imaging Clin N Am. May 2015;23(2):165-77. doi:10.1016/j.mric.2015.01.005
  4. Carter BW, Gladish GW. MR Imaging of Chest Wall Tumors. Magn Reson Imaging Clin N Am. May 2015;23(2):197-215. doi:10.1016/j.mric.2015.01.007
  5. Carter BW, Betancourt SL, Benveniste MF. MR Imaging of Mediastinal Masses. Top Magn Reson Imaging. Aug 2017;26(4):153-165. doi:10.1097/rmr.0000000000000134
  6. Hochhegger B, Marchiori E, Sedlaczek O, et al. MRI in lung cancer: a pictorial essay. Br J Radiol. Jul 2011;84(1003):661-8. doi:10.1259/bjr/24661484
  7. Mullan CP, Madan R, Trotman-Dickenson B, Qian X, Jacobson FL, Hunsaker A. Radiology of chest wall masses. AJR Am J Roentgenol. Sep 2011;197(3):W460-70. doi:10.2214/ajr.10.7259
  8. Kumar R. Myasthenia gravis and thymic neoplasms: A brief review. World J Clin Cases. Dec 16 2015;3(12):980-3. doi:10.12998/wjcc.v3.i12.980
  9. Ferreira Tda A, Chagas IS, Ramos RT, Souza EL. Congenital thoracic malformations in pediatric patients: two decades of experience. J Bras Pneumol. Mar-Apr 2015;41(2):196-9. doi:10.1590/s1806-37132015000004374
  10. Hellinger JC, Daubert M, Lee EY, Epelman M. Congenital thoracic vascular anomalies: evaluation with state-of-the-art MR imaging and MDCT. Radiol Clin North Am. Sep 2011;49(5):969-96. doi:10.1016/j.rcl.2011.06.013
  11. Karaosmanoglu AD, Khawaja RD, Onur MR, Kalra MK. CT and MRI of aortic coarctation: pre- and postsurgical findings. AJR Am J Roentgenol. Mar 2015;204(3):W224-33. doi:10.2214/ajr.14.12529
  12. Poletto E, Mallon MG, Stevens RM, CM A. Imaging Review of Aortic Vascular Rings and Pulmonary Sling. J Am Osteopath Coll Radiol. 2017;6(2):5-14.
  13. Mansukhani KA. Electrodiagnosis in traumatic brachial plexus injury. Ann Indian Acad Neurol. Jan 2013;16(1):19-25. doi:10.4103/0972-2327.107682
  14. Vijayasarathi A, Chokshi FH. MRI of the brachial plexus: A practical review. Appl Radiol. 2016;45(4):9-18.
  15. Woods JC, Wild JM, Wielpütz MO, et al. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging. Nov 2020;52(5):1306-1320. doi:10.1002/jmri.27030
  16. Zurkiya O, Ganguli S, Kalva SP, et al. ACR Appropriateness Criteria® Thoracic Outlet Syndrome. J Am Coll Radiol. May 2020;17(5s):S323-s334. doi:10.1016/j.jacr.2020.01.029
  17. Friedman T, Quencer KB, Kishore SA, Winokur RS, Madoff DC. Malignant Venous Obstruction: Superior Vena Cava Syndrome and Beyond. Semin Intervent Radiol. Dec 2017;34(4):398-408. doi:10.1055/s-0037-1608863
  18. Osiro S, Zurada A, Gielecki J, Shoja MM, Tubbs RS, Loukas M. A review of subclavian steal syndrome with clinical correlation. Med Sci Monit. May 2012;18(5):Ra57-63. doi:10.12659/msm.882721
  19. Potter BJ, Pinto DS. Subclavian steal syndrome. Circulation. Jun 3 2014;129(22):2320-3. doi:10.1161/circulationaha.113.006653
  20. Chavhan GB, Batmanabane V, Muthusami P, Towbin AJ, Borschel GH. MRI of thoracic outlet syndrome in children. Pediatr Radiol. Sep 2017;47(10):1222-1234. doi:10.1007/s00247-017- 3854-5
  21. Povlsen S, Povlsen B. Diagnosing Thoracic Outlet Syndrome: Current Approaches and Future Directions. Diagnostics (Basel). Mar 20 2018;8(1)doi:10.3390/diagnostics8010021
  22. Keser G, Direskeneli H, Aksu K. Management of Takayasu arteritis: a systematic review. Rheumatology (Oxford). May 2014;53(5):793-801. doi:10.1093/rheumatology/ket320
  23. Barman M. Acute aortic dissection. ESC e-J Cardio Pract. 2014;12(25):02Jul2014. doi:https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-12/Acute- aortic-dissection
  24. American College of Radiology. ACR Appropriateness Criteria® Thoracic Aorta Interventional Planning and Follow-up. American College of Radiology. Updated 2017. Accessed December 22, 2021. https://acsearch.acr.org/docs/3099659/Narrative/
  25. Ascha M, Renapurkar RD, Tonelli AR. A review of imaging modalities in pulmonary hypertension. Ann Thorac Med. Apr-Jun 2017;12(2):61-73. doi:10.4103/1817-1737.203742
  26. Rose-Jones LJ, McLaughlin VV. Pulmonary hypertension: types and treatments. Curr Cardiol Rev. 2015;11(1):73-9. doi:10.2174/1573403x09666131117164122
  27. Pascall E, Tulloh RM. Pulmonary hypertension in congenital heart disease. Future Cardiol. Jul 2018;14(4):343-353. doi:10.2217/fca-2017-0065
  28. Sancak T, Cangir AK, Atasoy C, Ozdemir N. The role of contrast enhanced three-dimensional MR angiography in pulmonary sequestration. Interact Cardiovasc Thorac Surg. Dec 2003;2(4):480-2. doi:10.1016/s1569-9293(03)00118-x
  29. Kolandaivelu A. Role of Cardiac Imaging (CT/MR) Before and After RF Catheter Ablation in Patients with Atrial Fibrillation. J Atr Fibrillation. Aug-Sep 2012;5(2):523. doi:10.4022/jafib.523

Additional Resources

  1. Aralasmak A, Cevikol C, Karaali K, et al. MRI findings in thoracic outlet syndrome. Skeletal Radiol. Nov 2012;41(11):1365-74. doi:10.1007/s00256-012-1485-3
  2. Baez JC, Seethamraju RT, Mulkern R, Ciet P, Lee EY. Pediatric Chest MR Imaging: Sedation, Techniques, and Extracardiac Vessels. Magn Reson Imaging Clin N Am. May 2015;23(2):321-35. doi:10.1016/j.mric.2015.01.010
  3. Bonci G, Steigner ML, Hanley M, et al. ACR Appropriateness Criteria(®) Thoracic Aorta Interventional Planning and Follow-Up. J Am Coll Radiol. Nov 2017;14(11s):S570-s583. doi:10.1016/j.jacr.2017.08.042
  4. Cardinale L, Ardissone F, Novello S, et al. The pulmonary nodule: clinical and radiological characteristics affecting a diagnosis of malignancy. Radiol Med. Sep 2009;114(6):871-89. doi:10.1007/s11547-009-0399-1
  5. Cline B, Hurwitz LM, Kim CY. MR Venography of the Central Veins of the Thorax. Top Magn Reson Imaging. Aug 2017;26(4):167-174. doi:10.1097/rmr.0000000000000139
  6. Dillman JR, Yarram SG, D'Amico AR, Hernandez RJ. Interrupted aortic arch: spectrum of MRI findings. AJR Am J Roentgenol. Jun 2008;190(6):1467-74. doi:10.2214/ajr.07.3408
  7. Doherty JU, Kort S, Mehran R, et al. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons. J Am Coll Cardiol. Feb 5 2019;73(4):488-516. doi:10.1016/j.jacc.2018.10.038
  8. Dudzinski DM, Isselbacher EM. Diagnosis and Management of Thoracic Aortic Disease. Curr Cardiol Rep. Dec 2015;17(12):106. doi:10.1007/s11886-015-0655-z
  9. Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. Nov 1 2014;35(41):2873-926. doi:10.1093/eurheartj/ehu281
  10. Hannuksela M, Stattin EL, Johansson B, Carlberg B. Screening for Familial Thoracic Aortic Aneurysms with Aortic Imaging Does Not Detect All Potential Carriers of the Disease. Aorta (Stamford). Feb 2015;3(1):1-8. doi:10.12945/j.aorta.2015.14-052
  11. Hansen MS, Kellman P. Image reconstruction: an overview for clinicians. J Magn Reson Imaging. Mar 2015;41(3):573-85. doi:10.1002/jmri.24687
  12. Hazenfield JM, Gaskill-Shipley MF. Neoplastic and Paraneoplastic Involvement of the Spinal Cord. Semin Ultrasound CT MR. Oct 2016;37(5):482-97. doi:10.1053/j.sult.2016.05.009
  13. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with Thoracic Aortic Disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. Apr 6 2010;121(13):e266-369. doi:10.1161/CIR.0b013e3181d4739e
  14. Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. Part II. Applications. Radiology. Aug 2012;264(2):349-68. doi:10.1148/radiol.12111703
  15. Lau C, Feldman DN, Girardi LN, Kim LK. Imaging for surveillance and operative management for endovascular aortic aneurysm repairs. J Thorac Dis. Apr 2017;9(Suppl 4):S309-s316. doi:10.21037/jtd.2017.03.89
  16. Mongeon FP, Marcotte F, Terrone DG. Multimodality Noninvasive Imaging of Thoracic Aortic Aneurysms: Time to Standardize? Can J Cardiol. Jan 2016;32(1):48-59. doi:10.1016/j.cjca.2015.09.025
  17. Mueller GC, Lu JC, Mahani MG, Dorfman AL, Agarwal PP. MR Imaging of Thoracic Veins. Magn Reson Imaging Clin N Am. May 2015;23(2):293-307. doi:10.1016/j.mric.2015.01.001
  18. Nörenberg D, Ebersberger HU, Diederichs G, Hamm B, Botnar RM, Makowski MR. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. Eur Radiol. Mar 2016;26(3):910-20. doi:10.1007/s00330-015-3881-2
  19. Pynnonen MA, Gillespie MB, Roman B, et al. Clinical Practice Guideline: Evaluation of the Neck Mass in Adults. Otolaryngol Head Neck Surg. Sep 2017;157(2_suppl):S1-s30. doi:10.1177/0194599817722550
  20. Rajiah P. CT and MRI in the Evaluation of Thoracic Aortic Diseases. Int J Vasc Med. 2013;2013:797189. doi:10.1155/2013/797189
  21. Ruano CA, Marinho-da-Silva A, Donato P. Congenital Thoracic Venous Anomalies in Adults: Morphologic MR Imaging. Curr Probl Diagn Radiol. Jul-Aug 2015;44(4):337-45. doi:10.1067/j.cpradiol.2015.01.002
  22. Rubin DI. Brachial and lumbosacral plexopathies: A review. Clin Neurophysiol Pract. 2020;5:173-193. doi:10.1016/j.cnp.2020.07.005
  23. Smith BM, Lu JC, Dorfman AL, Mahani MG, Agarwal PP. Rings and slings revisited. Magn Reson Imaging Clin N Am. Feb 2015;23(1):127-35. doi:10.1016/j.mric.2014.09.011
  24. Stojanovska J, Rodriguez K, Mueller GC, Agarwal PP. MR Imaging of the Thoracic Aorta. Magn Reson Imaging Clin N Am. May 2015;23(2):273-91. doi:10.1016/j.mric.2015.01.004
  25. Zapala MA, Ho-Fung VM, Lee EY. Thoracic Neoplasms in Children: Contemporary Perspectives and Imaging Assessment. Radiol Clin North Am. Jul 2017;55(4):657-676. doi:10.1016/j.rcl.2017.02.008

Coding Section 

Code Number Description
CPT 71550 Magnetic resonance (e.g., proton) imaging, chest (e.g., for evaluation of hilar and mediastinal lymphadenopathy); without contrast material(s)
  71551 Magnetic resonance (e.g., proton) imaging, chest (e.g., for evaluation of hilar and mediastinal lymphadenopathy); with contrast material(s)
  71552
Magnetic resonance (e.g., proton) imaging, chest (e.g., for evaluation of hilar and mediastinal lymphadenopathy); without contrast material(s), followed by contrast material(s) and further sequences

Procedure and diagnosis codes on Medical Policy documents are included only as a general reference tool for each policy. They may not be all-inclusive.

This medical policy was developed through consideration of peer-reviewed medical literature generally recognized by the relevant medical community, U.S. FDA approval status, nationally accepted standards of medical practice and accepted standards of medical practice in this community, Blue Cross Blue Shield Association technology assessment program (TEC) and other nonaffiliated technology evaluation centers, reference to federal regulations, other plan medical policies, and accredited national guidelines.

"Current Procedural Terminology © American Medical Association. All Rights Reserved" 

History From 2019 Forward     

11/21/2022 Annual review, no change to policy intent. Updating references

11/08/2021

Annual review, adding criteria related to cystic fibrosis, brachial plexopathy imaging and clarifying the preoperative evaluation criteria. Also updating description and references. 

11/01/2020 

Annual review, adding medical criteria for chest wall pain and other clarifications. Also updating references. 

11/26/2019

New Policy

Complementary Content
${loading}